

School of Engineering Department of Electrical and Electronics Engineering

OPTIMIZING SOLAR SYSTEMS USING SCADA

Presented by: Mohammad Shraif

Outline

5/9/2019

- Introduction
- Maintenance and optimization
- Problem Statement
- Challenges
- Available Techniques
- Proposed Solution
- Comparison
- Cost Analysis
- Conclusion and future work

Introduction

• Photovoltaic is becoming essential.

• Photovoltaic is the direct conversion of sunlight into electricity.

Maintenance and Optimization

- Improving performance of PV systems.
- Analyzing and optimizing the functionality and performance of PV systems.
- Enhancing the control and the monitoring of the solar system inputs (Feedback) and outputs (alarms).
- Extending the life time and the efficiency of the system due to proper precise monitoring.

Challenges

• Type of solar panels

Polycrystalline

Monocrystalline

• Area of the solar system

• Feedback status (diagnostics, error, etc.) of every solar panel

• Network length

5/9/2019

Available Techniques

• Visual inspection

• Thermography

• Wireless sensor based network

27 8,15

50,0 57,5 55,0 52,5 50,0

Proposed Solution

- Motivation
 - Limitations of current methods
- SCADA System based on PLC and industrial network
 - Supervisory Control and Data Acquisition
 - A system of hardware and software elements that allows to monitor, gather, record information and control outputs.

5/9/2019

Equipment Used

- AKT-180-M Solar Panel
- Sensors Chassis Chassis • Power DeviceNet Supply Network I/O and Communication Controllers Modules 64 Nodes DeviceNet Scanner D.W. (160 bits) • DeviceNet Cable •24 Vdc 10240 bits •500 m thick cable in total length •6 m drop line length

Equipment Used Cont'd

- I/O communication devices :
 - Armorblock

}10m signal cabling length

- ArmorPOint
- Flex
 - 30 meter signal cabling length

• PLC

• HMI

DeviceNet based system

- PV farm with 93 KWp
- Three different scenarios
 - 1. ArmorBlock
 - 2. Flex
 - 3. ArmorPoint

5/9/2019

Scenario I: Using ArmorBlock

Scenario I Redistributed

Scenario II: ArmorPoint

SCADA V.S. Thermography V.S. W.S.N.

	• •	•
Thermography	WSN	SCADA
Strongly affected by weather	Affected by weather	Independent of weather
	Limited number of controlled sensors	Expandable
No readings	Non-precise feedbacks	Higher precision of feedbacks
	Master-slave protocol only	Several protocols are available
Wireless communication only	Wireless communication only	In addition to cabling, wireless is available
Non-secured transfer of data	Non-secured transfer of data	More secured transfer of data
	Non-feasible access	HMI availability
Simple	Complex configuration	Simple configuration
	High power consumption	Moderate pow_2019 16 consumption
High lifetime cost	High lifetime cost	Low lifetime cost

Cost Analysis

System	Cost (\$)	Operation & Maintenance
Thermography	29895	High
W.S.N.	14478	Very High
SCADA (ArmorBlock)	4501.39	Medium
SCADA (ArmorPoint)	17504.46	Medium
SCADA(Flex)	13749.09	5/9/2019 Medium

17

 \odot

Conclusion and Future Work

- Maintenance and optimization of PV systems are essential needs.
- The proposed SCADA is more reliable than current systems.
- The proposed SCADA is expandable and can handle several scenarios and situations.
- The proposed SCADA is characterized by cost effectiveness.
- It has the capability to handle inputs, outputs, and power.
- New horizons to get more precise feedbacks to be considered.
- Increasing efficiency by controlling outputs (Rotary axes).

5/9/2019 18

Thank You Q & A

19

5/9/2019